About Deep Learning

 Deep Learning

UNIT I

Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions.


πŸ‘‰Deep Learning: UNIT 1 (A) Notes: Deep Learning: Fundamentals Part 1 Notes

πŸ‘‰Deep Learning: UNIT 1 (A) PPTs: Deep Learning Fundamentals Part 1 PPTs

πŸ‘‰Deep Learning: Unit 1 (B) Notes: Deep Learning Fundamentals Part 2 Notes

πŸ‘‰Deep Learning: UNIT 1 (B): Deep Learning: Fundamentals Part2 PPTs

πŸ‘‰Deep Learning: UNIT 1: Deep Learning - Fundamentals: Long Answer Questions

πŸ‘‰Deep Learning: UNIT 1: Deep Learning - Fundamentals : Short Answer Questions


 UNIT II

CNN: Introduction, striding and padding, pooling layers, structure, operations and prediction of                  CNN with layers, CNN -Case study with MNIST, CNN VS Fully Connected.


πŸ‘‰Deep Learning: UNIT-2: CNN PPTs


πŸ‘‰Deep Learning: UNIT-2: CNN Notes


πŸ‘‰Deep Learning: UNIT 2: CNN : Long Answer Questions


πŸ‘‰Deep Learning: UNIT 2: CNN: Short Answer Questions



 UNIT III

RNN: Handling Branches, Layers, Nodes, Essential Elements-Vanilla RNNs, GRUs, LSTM 


πŸ‘‰Deep Learning: UNIT 3 (A): RNN: Notes

πŸ‘‰Deep Learning: UNIT 3 (A) : RNN : PPTs

πŸ‘‰Deep Learning: UNIT- 3: RNN: Long Answer Questions

πŸ‘‰Deep Learning: UNIT 3 : RNN : Short Answer Questions



UNIT IV

Autoencoders: Denoising Autoencoders, Sparse Autoencoders, Deep Autoencoders, Variational                                  Autoencoders, GANS 


πŸ‘‰Deep Learning: UNIT 4: Autoencoders PPTs

πŸ‘‰Deep Learning: UNIT 4: Autoencoders NOTEs


UNIT V

Transfer Learning- Types, Methodologies, Diving into Transfer Learning, Challenges 


πŸ‘‰Deep Learning : UNIT 5: Transfer Learning Notes

πŸ‘‰Deep Learning : UNIT 5: Transfer Learning PPTs

Text Books:

1.  Seth Weidman, “Deep Learning from Scratch”, O'Reilly Media, Inc., 2019

2.  Ian Goodfellow, Yoshua Bengio and Aaron Courville, “Deep Learning” , MIT Press, 2015

3.  Dipanjan Sarkar, Raghav Bali, “Transfer Learning in Action”, Manning Publications, 2021 

Reference Books:

1.  Giancarlo Zaccone, Md. Rezaul Karim, Ahmed Menshawy "Deep Learning with TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.


2.  Antonio Gulli, Sujit Pal, "Deep Learning with Keras", Packt Publishers, 2017.

3.  Francois Chollet, "Deep Learning with Python", Manning Publications, 2017.

Machine Learning 1: UNIT 5 (B) : Clustering Questions

                                                                         UNIT 5 (B)

                                                                     Clustering

5.     How does clustering work

6.     finding similarities using distances

7.     Euclidean distance and other distance metrics

k-Means Clustering:

8.     Plotting customers with their segments

9.     normalizing features

10.  cluster centres and interpreting the Clusters

11.  Hierarchical Clustering

 

UNIT-5 (B)

Long Answer Questions

1.    5.     Explain Hierarchical Clustering algorithm with example.

6.     What is the purpose of normalizing features?  How it can perform? Explain.

7.     How can you find the similarities using distances? List the different distance metrics.

8.     How can you be plotting the customers with their segments? Explain.

 

Short Answer Questions

1. 

4.     What is the purpose of cluster centre?

5.     How can you define cluster?

6.     What is the clustering algorithm?

7.     How can you identify the similarities?

8.     Euclidian Distance.

9.     Define Normalization features.

10.  List the techniques can be used for discovering the possible number of clusters?

11.  Explain Dendrogram.

12.  Explain Elbow Method

13.  Define Hierarchical Clustering Algorithm.

Machine Learning 1: UNIT 5 (B) PPTs: Clustering PPTs

  Unit 5 B

Clustering

How does clustering work

finding similarities using distances

Euclidean distance and other distance metrics

k-Means Clustering:

Plotting customers with their segments

normalizing features

cluster centres and interpreting the Clusters

 Hierarchical Clustering


------------------------------------------------------------------------------------------------------------------------


Machine Learning 1: UNIT 5(B) NOTEs: Clustering NOTES

 Unit 5 B

Clustering

5.     How does clustering work

6.     finding similarities using distances

7.     Euclidean distance and other distance metrics

k-Means Clustering:

8.     Plotting customers with their segments

9.     normalizing features

10.  cluster centres and interpreting the Clusters

11.  Hierarchical Clustering

-------------------------------------------------------------------------------------------------------------------------


Machine Learning 1: UNIT-5(A): Dimensionality Reduction Questions

 UNIT 5 (A)

Dimensionality Reduction

1.     The Curse of Dimensionality

2.     Main Approaches for Dimensionality Reduction

3.     Projection

4.     PCA

--------------------------------------------------------------------------------------------------------------------------------

Long Answer Questions

1.     What is the curse of dimensionality?

2.     What are the main motivations for reducing a dataset’s dimensionality? What are the main drawbacks?

3.     Explain Projection with example.

4.     Explain PCA with example.

Short Answer Questions

1.     Define Dimensionality Reduction.

2.     List main approaches to dimensionality reduction.

3.     List the most popular dimensionality reduction techniques.




Machine Learning 1: UNIT-5(A) PPTs: Dimensionality Reduction PPTs

                                                                              Unit V (A)

Dimensionality Reduction

1.     The Curse of Dimensionality

2.     Main Approaches for Dimensionality Reduction

3.     Projection

4.     PCA



Machine Learning 1: UNIT-5(A) NOTES: Dimensionality Reduction NOTES

                                                                                 Unit V

Dimensionality Reduction

1.     The Curse of Dimensionality

2.     Main Approaches for Dimensionality Reduction

3.     Projection

4.     PCA

About Machine Learning

Welcome! Your Hub for AI, Machine Learning, and Emerging Technologies In today’s rapidly evolving tech landscape, staying updated with the ...