Posts

Showing posts with the label Pooling

Deep Learning: UNIT-2 CNN

  UNIT II CNN 1.      Introduction 2.      striding and padding 3.      pooling layers 4.      structure 5.      operations and prediction of CNN with layers 6.      CNN -Case study with MNIST 7.      CNN VS Fully Connected  ðŸ‘‰ Deep Learning: UNIT-2: CNN PPTs 👉 Deep Learning: UNIT-2 CNN Notes 👉 Deep Learning: UNIT-2 : CNN: Long Answer Questions 👉 Deep Learning: UNIT-2: CNN : Short Answer Questions

Deep Learning: UNIT-2 PPT

UNIT II  CNN  1. Introduction  2. striding and padding   3. pooling layers  4. structure  5. operations and prediction of CNN with layers  6. CNN -Case study with MNIST  7. CNN VS Fully Connected

Deep Learning: UNIT 2- CNN Notes

                                                                                                   UNIT II  CNN  1. Introduction  2. striding and padding   3. pooling layers  4. structure  5. operations and prediction of CNN with layers  6. CNN -Case study with MNIST  7.  CNN VS Fully Connected

Convolutional Neural Network 2

Image
  Q1. Sparse Connection What does sparsity of connections mean as a benefit of using convolutional layers? Choose the correct answer from below: A.      Each filter is connected to every channel in the previous layer B.      Each layer in a convolutional network is connected only to two other layers C.       Each activation in the next layer depends on only a small number of activations from the previous layer D.      Regularization causes gradient descent to set many of the parameters to zero Ans: C Correct answer:  Each activation in the next layer depends on only a small number of activations from the previous layer. Reason : In neural network usage, “dense” connections connect all inputs. By contrast, a CNN is “sparse” because only the local “patch” of pixels is connected, instead using all pixels as an input. High correlation can be...