Posts

Showing posts with the label Fully Connected Layer

Deep Learning: UNIT 2: CNN: Short Answer Questions

   UNIT II CNN Short Answer Questions --------------------------------------------------------------------------------------------------------------------------- 1.      List the applications of CNN. 2.      Define Convolution. 3.      Define Stride. 4.      Explain padding. 5.      What the purpose of padding? 6.      Define Kernal. 7.      Define Pooling. 8.      List the different pooling techniques. 9.      Define Flattening. 10.   Define Fully Connected Layer. 11.   List the difference between CNN and Fully Connected Layer. 12.   What is a filter (or kernel) in the context of a CNN? 13.   Discuss the role of fully connected layers in CNNs. 14.   Explain the concept of pooling in CNNs and how it sometimes impacts output size and can cause...

Deep Learning: UNIT-2 : CNN: Long Answer Questions

UNIT II CNN Long Answer Questions ------------------------------------------------------------------------------------------------------ 1.      Explain CNN with an example. 2.      List the different applications of CNN. 3.      Write an example function for Convolution and Pooling operations and explain in detail. 4.      Draw and explain the architecture of convolution neural networks. 5.      Explain about the convolutional layers in CNN. 6.      Explain striding and padding in CNN with example. 7.      Draw the structure of CNN. 8.      Apply CNN architecture to Classify MNIST Hand Written Dataset. 9.      List the difference between CNN and Fully Connected Layers.

Deep Learning: UNIT-2 CNN

  UNIT II CNN 1.      Introduction 2.      striding and padding 3.      pooling layers 4.      structure 5.      operations and prediction of CNN with layers 6.      CNN -Case study with MNIST 7.      CNN VS Fully Connected  ðŸ‘‰ Deep Learning: UNIT-2: CNN PPTs 👉 Deep Learning: UNIT-2 CNN Notes 👉 Deep Learning: UNIT-2 : CNN: Long Answer Questions 👉 Deep Learning: UNIT-2: CNN : Short Answer Questions

Deep Learning: UNIT-2 PPT

UNIT II  CNN  1. Introduction  2. striding and padding   3. pooling layers  4. structure  5. operations and prediction of CNN with layers  6. CNN -Case study with MNIST  7. CNN VS Fully Connected

Deep Learning: UNIT 2- CNN Notes

                                                                                                   UNIT II  CNN  1. Introduction  2. striding and padding   3. pooling layers  4. structure  5. operations and prediction of CNN with layers  6. CNN -Case study with MNIST  7.  CNN VS Fully Connected