Showing posts with label Naive Bayes Classifier - Example -classify- play tennis - forecast. Show all posts
Showing posts with label Naive Bayes Classifier - Example -classify- play tennis - forecast. Show all posts

Naive Bayes Classifier - Example -classify- play tennis - forecast


NaΓ―ve Bayes Classifier - Example -classify- play tennis - forecast

  • Let’s build a classifier that predicts whether I should play tennis given the forecast
  • It takes four attributes to describe the forecast; namely, 
    1. the outlook
    2. the temperature
    3. the humidity, and 
    4. the presence or absence of wind
  • Furthermore, the values of the four attributes are qualitative (also known as categorical). 
  • They take on the values shown below.
    • π‘Άπ’–π’•π’π’π’π’Œ ∈[π‘Ίπ’–π’π’π’š,𝑢𝒗𝒆𝒓𝒄𝒂𝒔𝒕, π‘Ήπ’‚π’Šπ’π’š]
    • π‘»π’†π’Žπ’‘π’†π’“π’‚π’•π’–π’“π’†∈[𝑯𝒐𝒕,π‘΄π’Šπ’π’…, π‘ͺ𝒐𝒐𝒍]
    • π‘―π’–π’Žπ’Šπ’…π’Šπ’•π’š ∈[π‘―π’Šπ’ˆπ’‰, π‘΅π’π’“π’Žπ’‚π’]
    • π‘Ύπ’Šπ’π’…π’š ∈[π‘Ύπ’†π’‚π’Œ, π‘Ίπ’•π’“π’π’π’ˆ]
  • The class label is the variable, Play and takes the values Yes or No.
    • π‘·π’π’‚π’š∈[𝒀𝒆𝒔, 𝑡𝒐]
  • We read-in training data below that has been collected over 14 days














Classification Phase

Let’s say, we get a new instance of the weather condition
 π‘Ώ^′=(π‘Άπ’–π’•π’π’π’π’Œ=π‘Ίπ’–π’π’π’š, π‘»π’†π’Žπ’‘π’†π’“π’‚π’•π’–π’“π’†=π‘ͺ𝒐𝒐𝒍, π‘―π’–π’Žπ’Šπ’…π’Šπ’•π’š=π‘―π’Šπ’ˆπ’‰, π‘Ύπ’Šπ’π’…=π‘Ίπ’•π’“π’π’π’ˆ)  
 that will have to be classified (i.e., are we going to play tennis under the conditions specified by 𝑋^′).
With the MAP rule, we compute the posterior probabilities.
 This is easily done by looking up the tables we built in the learning phase.






About Machine Learning

Welcome! Your Hub for AI, Machine Learning, and Emerging Technologies In today’s rapidly evolving tech landscape, staying updated with the ...