Naive Bayes Classifier - Example -classify- play tennis - forecast
NaΓ―ve Bayes Classifier - Example -classify- play tennis - forecast Let’s build a classifier that predicts whether I should play tennis given the forecast . It takes four attributes to describe the forecast; namely, the outlook , the temperature , the humidity , and the presence or absence of wind . Furthermore, the values of the four attributes are qualitative (also known as categorical ). They take on the values shown below. πΆππππππ ∈[πΊππππ,πΆπππππππ, πΉππππ] π»ππππππππππ∈[π―ππ,π΄πππ
, πͺπππ] π―ππππ
πππ ∈[π―πππ, π΅πππππ] πΎπππ
π ∈[πΎπππ, πΊπππππ] The class label is the variable, Play and takes the values Yes or No. π·πππ∈[πππ, π΅π] We read-in training data below that has been collected over 14 days Classification Phase Let’s say, we get a new instance of the weather condition , πΏ^′=(πΆππππππ=πΊππππ, π»ππππππππππ=πͺπππ, π―ππππ
πππ=π―πππ, πΎπππ