Posts

Showing posts with the label Weight Initialization

Deep Learning: UNIT 1 : Deep Learning Fundamentals

   Deep Learning UNIT   I Deep Learning:   Fundamentals Introduction Building Block of Neural Networks Layers MLPs Forward   pass backward   pass class trainer   and   optimizer The   Vanishing   and   Exploding   Gradient   Problems Difficulties in Convergence Local and Spurious Optima Preprocessing Momentum learning rate Decay Weight Initialization Regularization Dropout SoftMax Cross Entropy loss   function Activation   Functions πŸ‘‰ Deep Learning: UNIT 1 (A) Notes: Deep Learning: Fundamentals Part 1 Notes πŸ‘‰ Deep Learning: UNIT 1 (A) PPTs: Deep Learning Fundamentals Part 1 PPTs πŸ‘‰ Deep Learning: Unit 1 (B) Notes: Deep Learning Fundamentals Part 2 Notes πŸ‘‰ Deep Learning: UNIT 1 (B): Deep Learning: Fundamentals Part2 PPTs πŸ‘‰ Deep Learning: UNIT 1: Deep Learning Fundamentals -Long Answer Questions πŸ‘‰ Deep Learning: UNIT 1: Deep Learning Fundamentals - Short Answer Questions

Deep Learning: UNIT 1 (B): Deep Learning: Fundamentals Part2 PPTs

                                                                                                 UNIT-1 B Deep Learning: Fundamentals 1.      The Softmax Function 2.      Cross-Entropy Loss Function 3.      Activation Functions 4.      Preprocessing 5.      Momentum 6.      Learning Rate Decay 7.      Weight Initialization 8.      Regularization 9.      Dropout

Deep Learning: Unit 1 (B) Notes: Deep Learning Fundamentals Part2 Notes

  UNIT-1 B Deep Learning: Fundamentals 1.      The Softmax Function 2.      Cross-Entropy Loss Function 3.      Activation Functions 4.      Preprocessing 5.      Momentum 6.      Learning Rate Decay 7.      Weight Initialization 8.      Regularization 9.      Dropout