Showing posts with label Layers. Show all posts
Showing posts with label Layers. Show all posts

Deep Learning: UNIT 3: RNN

 UNIT III

RNN

------------------------------------------------------------------------------------------------------------------------

1.     Handling Branches
2.     Layers
3.     Nodes
4.     Essential Elements
5.     Vanilla RNNs
6.     GRUs

Deep Learning: UNIT 3 (A): RNN: Notes

 UNIT III (A)

RNN

--------------------------------------------------------------------------------------------------------------------

1.     Handling Branches

2.     Layers

3.     Nodes

4.     Essential Elements


Deep Learning: UNIT 3 (A) : RNN : PPTs


UNIT III (A)

RNN

1.     Handling Branches

2.     Layers

3.     Nodes

4.     Essential Elements


Deep Learning: UNIT 1 : Deep Learning Fundamentals

  Deep Learning

UNIT I

Deep Learning: Fundamentals

  • Introduction
  • Building Block of Neural Networks
  • Layers
  • MLPs
  • Forward pass
  • backward pass
  • class
  • trainer and optimizer
  • The Vanishing and Exploding Gradient Problems
  • Difficulties in Convergence
  • Local and Spurious Optima
  • Preprocessing
  • Momentum
  • learning rate Decay
  • Weight Initialization
  • Regularization
  • Dropout
  • SoftMax
  • Cross Entropy loss function
  • Activation Functions


πŸ‘‰Deep Learning: UNIT 1 (A) Notes: Deep Learning: Fundamentals Part 1 Notes

πŸ‘‰Deep Learning: UNIT 1 (A) PPTs: Deep Learning Fundamentals Part 1 PPTs

πŸ‘‰Deep Learning: Unit 1 (B) Notes: Deep Learning Fundamentals Part 2 Notes

πŸ‘‰Deep Learning: UNIT 1 (B): Deep Learning: Fundamentals Part2 PPTs

πŸ‘‰Deep Learning: UNIT 1: Deep Learning Fundamentals -Long Answer Questions

πŸ‘‰Deep Learning: UNIT 1: Deep Learning Fundamentals - Short Answer Questions

Deep Learning: UNIT 1 (A) PPTs: Deep Learning Fundamentals PPTs

                                                                                    UNIT I (A)

Deep Learning: Fundamentals

1.      Introduction

2.      Building Block of Neural Networks

3.      Layers

4.      MLPs

5.      Forward pass

6.      backward pass

7.      class

8.      trainer and optimizer

9.      The Vanishing and Exploding Gradient Problems

10.  Difficulties in Convergence

11.  Local and Spurious Optima



Deep Learning: UNIT 1 (A) Notes: Deep Learning: Fundamentals Notes

                                                                             UNIT I (A)

Deep Learning: Fundamentals

1.      Introduction

2.      Building Block of Neural Networks

3.      Layers

4.      MLPs

5.      Forward pass

6.      backward pass

7.      class

8.      trainer and optimizer

9.      The Vanishing and Exploding Gradient Problems

10.  Difficulties in Convergence

11.  Local and Spurious Optima



About Machine Learning

Welcome! Your Hub for AI, Machine Learning, and Emerging Technologies In today’s rapidly evolving tech landscape, staying updated with the ...