Posts

Showing posts with the label Transfer Learning

About Deep Learning

 Deep Learning UNIT I Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions. ๐Ÿ‘‰ Deep Learning: UNIT 1 (A) Notes: Deep Learning: Fundamentals Part 1 Notes ๐Ÿ‘‰ Deep Learning: UNIT 1 (A) PPTs: Deep Learning Fundamentals Part 1 PPTs ๐Ÿ‘‰ Deep Learning: Unit 1 (B) Notes: Deep Learning Fundamentals Part 2 Notes ๐Ÿ‘‰ Deep Learning: UNIT 1 (B): Deep Learning: Fundamentals Part2 PPTs ๐Ÿ‘‰ Deep Learning: UNIT 1: Deep Learning - Fundamentals: Long Answer Questions ๐Ÿ‘‰ Deep Learning: UNIT 1: Deep Learning - Fundamentals : Short Answer Questions   UNIT II CNN: Introduction, striding and padding, pooling layers , structure, o

Deep Learning

Deep Learning   ๐Ÿ‘‰ Deep Learning Syllabus ๐Ÿ‘‰ Deep Learning: Fundamentals ๐Ÿ‘‰ CNN ๐Ÿ‘‰ RNN ๐Ÿ‘‰Autoencoders ๐Ÿ‘‰Transfer   Learning UNIT I Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions. UNIT II CNN: Introduction, striding and padding, pooling layers, structure, operations and prediction of CNN with layers, CNN -Case study with MNIST, CNN VS Fully Connected UNIT III RNN: Handling Branches, Layers, Nodes, Essential Elements-Vanilla RNNs, GRUs, LSTM UNIT IV Autoencoders: Denoising Autoencoders, Sparse Autoencoders, Deep Autoencoders, Variational Autoencoders, GANS UNIT V Transfer Learning - Types, Methodologies, Diving into Transfer Learn