Showing posts with label Autoencoders. Show all posts
Showing posts with label Autoencoders. Show all posts

Deep Learning: UNIT 4 : Autoencoders

UNIT IV

Autoencoders

1.     Denoising Autoencoders

2.     Sparse Autoencoders

3.     Deep Autoencoders

4.     Variational Autoencoders

5.     GANS 


๐Ÿ‘‰Autoencoders Notes

๐Ÿ‘‰Autoencoders PPTs


Deep Learning: UNIT-4 : Autoencoders Notes

UNIT IV 
Autoencoders 

1. Denoising Autoencoders 
2. Sparse Autoencoders 
3. Deep Autoencoders 
4. Variational Autoencoders 
5. GANS

  Reference: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems, Aurรฉlien Gรฉron, SECOND EDITION, O’Reilly

Deep Learning UNIT- 4 Autoencoders PPTs

UNIT IV 
Autoencoders 

1. Denoising Autoencoders 
2. Sparse Autoencoders 
3. Deep Autoencoders 
4. Variational Autoencoders 
5. GANS

 

Reference: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems, Aurรฉlien Gรฉron, SECOND EDITION, O’Reilly

About Deep Learning

 Deep Learning

UNIT I

Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions.


๐Ÿ‘‰Deep Learning: UNIT 1 (A) Notes: Deep Learning: Fundamentals Part 1 Notes

๐Ÿ‘‰Deep Learning: UNIT 1 (A) PPTs: Deep Learning Fundamentals Part 1 PPTs

๐Ÿ‘‰Deep Learning: Unit 1 (B) Notes: Deep Learning Fundamentals Part 2 Notes

๐Ÿ‘‰Deep Learning: UNIT 1 (B): Deep Learning: Fundamentals Part2 PPTs

๐Ÿ‘‰Deep Learning: UNIT 1: Deep Learning - Fundamentals: Long Answer Questions

๐Ÿ‘‰Deep Learning: UNIT 1: Deep Learning - Fundamentals : Short Answer Questions


 UNIT II

CNN: Introduction, striding and padding, pooling layers, structure, operations and prediction of                  CNN with layers, CNN -Case study with MNIST, CNN VS Fully Connected.


๐Ÿ‘‰Deep Learning: UNIT-2: CNN PPTs


๐Ÿ‘‰Deep Learning: UNIT-2: CNN Notes


๐Ÿ‘‰Deep Learning: UNIT 2: CNN : Long Answer Questions


๐Ÿ‘‰Deep Learning: UNIT 2: CNN: Short Answer Questions



 UNIT III

RNN: Handling Branches, Layers, Nodes, Essential Elements-Vanilla RNNs, GRUs, LSTM 


๐Ÿ‘‰Deep Learning: UNIT 3 (A): RNN: Notes

๐Ÿ‘‰Deep Learning: UNIT 3 (A) : RNN : PPTs

๐Ÿ‘‰Deep Learning: UNIT- 3: RNN: Long Answer Questions

๐Ÿ‘‰Deep Learning: UNIT 3 : RNN : Short Answer Questions



UNIT IV

Autoencoders: Denoising Autoencoders, Sparse Autoencoders, Deep Autoencoders, Variational                                  Autoencoders, GANS 


๐Ÿ‘‰Deep Learning: UNIT 4: Autoencoders PPTs

๐Ÿ‘‰Deep Learning: UNIT 4: Autoencoders NOTEs


UNIT V

Transfer Learning- Types, Methodologies, Diving into Transfer Learning, Challenges 


๐Ÿ‘‰Deep Learning : UNIT 5: Transfer Learning Notes

๐Ÿ‘‰Deep Learning : UNIT 5: Transfer Learning PPTs

Text Books:

1.  Seth Weidman, “Deep Learning from Scratch”, O'Reilly Media, Inc., 2019

2.  Ian Goodfellow, Yoshua Bengio and Aaron Courville, “Deep Learning” , MIT Press, 2015

3.  Dipanjan Sarkar, Raghav Bali, “Transfer Learning in Action”, Manning Publications, 2021 

Reference Books:

1.  Giancarlo Zaccone, Md. Rezaul Karim, Ahmed Menshawy "Deep Learning with TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.


2.  Antonio Gulli, Sujit Pal, "Deep Learning with Keras", Packt Publishers, 2017.

3.  Francois Chollet, "Deep Learning with Python", Manning Publications, 2017.

Deep Learning

Deep Learning  



UNIT I
Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions.

UNIT II
CNN: Introduction, striding and padding, pooling layers, structure, operations and prediction of CNN with layers, CNN -Case study with MNIST, CNN VS Fully Connected

UNIT III
RNN: Handling Branches, Layers, Nodes, Essential Elements-Vanilla RNNs, GRUs, LSTM

UNIT IV
Autoencoders: Denoising Autoencoders, Sparse Autoencoders, Deep Autoencoders, Variational Autoencoders, GANS

UNIT V
Transfer Learning- Types, Methodologies, Diving into Transfer Learning, Challenges



Text Books:

1.  Seth Weidman, “Deep Learning from Scratch”, O'Reilly Media, Inc., 2019

2.  Ian Goodfellow, Yoshua Bengio and Aaron Courville, “Deep Learning” , MIT Press, 2015

3.  Dipanjan Sarkar, Raghav Bali, “Transfer Learning in Action”, Manning Publications, 2021

 

Reference Books:

1.  Giancarlo Zaccone, Md. Rezaul Karim, Ahmed Menshawy "Deep Learning with  TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.


2.  Antonio Gulli, Sujit Pal, "Deep Learning with Keras", Packt Publishers, 2017.

3.  Francois Chollet, "Deep Learning with Python", Manning Publications, 2017.


MCQs๐Ÿ‘‡


About Machine Learning

Welcome! Your Hub for AI, Machine Learning, and Emerging Technologies In today’s rapidly evolving tech landscape, staying updated with the ...