Posts

Showing posts with the label Autoencoders

Deep Learning: UNIT 4 : Autoencoders

UNIT IV Autoencoders 1.      Denoising Autoencoders 2.      Sparse Autoencoders 3.      Deep Autoencoders 4.      Variational Autoencoders 5.      GANS   👉 Autoencoders Notes 👉 Autoencoders PPTs

Deep Learning: UNIT-4 : Autoencoders Notes

UNIT IV  Autoencoders  1. Denoising Autoencoders  2. Sparse Autoencoders  3. Deep Autoencoders  4. Variational Autoencoders  5. GANS   Reference: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems, Aurélien Géron, SECOND EDITION, O’Reilly

Deep Learning UNIT- 4 Autoencoders PPTs

UNIT IV  Autoencoders   1. Denoising Autoencoders  2. Sparse Autoencoders  3. Deep Autoencoders  4. Variational Autoencoders  5. GANS   Reference: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems, Aurélien Géron, SECOND EDITION, O’Reilly

About Deep Learning

 Deep Learning UNIT I Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions. 👉 Deep Learning: UNIT 1 (A) Notes: Deep Learning: Fundamentals Part 1 Notes 👉 Deep Learning: UNIT 1 (A) PPTs: Deep Learning Fundamentals Part 1 PPTs 👉 Deep Learning: Unit 1 (B) Notes: Deep Learning Fundamentals Part 2 Notes 👉 Deep Learning: UNIT 1 (B): Deep Learning: Fundamentals Part2 PPTs 👉 Deep Learning: UNIT 1: Deep Learning - Fundamentals: Long Answer Questions 👉 Deep Learning: UNIT 1: Deep Learning - Fundamentals : Short Answer Questions   UNIT II CNN: Introduction, striding and padding, pooling layers , stru...

Deep Learning

Deep Learning   👉 Deep Learning Syllabus 👉 Deep Learning: Fundamentals 👉 CNN 👉 RNN 👉 Autoencoders 👉 Transfer   Learning UNIT I Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions. UNIT II CNN: Introduction, striding and padding, pooling layers, structure, operations and prediction of CNN with layers, CNN -Case study with MNIST, CNN VS Fully Connected UNIT III RNN: Handling Branches, Layers, Nodes, Essential Elements-Vanilla RNNs, GRUs, LSTM UNIT IV Autoencoders: Denoising Autoencoders, Sparse Autoencoders, Deep Autoencoders, Variational Autoencoders, GANS UNIT V Transfer Learning - Types, Methodologies, Diving int...