Posts

Showing posts with the label Kernel

Deep Learning: UNIT-2 CNN

  UNIT II CNN 1.      Introduction 2.      striding and padding 3.      pooling layers 4.      structure 5.      operations and prediction of CNN with layers 6.      CNN -Case study with MNIST 7.      CNN VS Fully Connected  ðŸ‘‰ Deep Learning: UNIT-2: CNN PPTs 👉 Deep Learning: UNIT-2 CNN Notes 👉 Deep Learning: UNIT-2 : CNN: Long Answer Questions 👉 Deep Learning: UNIT-2: CNN : Short Answer Questions

Deep Learning: UNIT-2 PPT

UNIT II  CNN  1. Introduction  2. striding and padding   3. pooling layers  4. structure  5. operations and prediction of CNN with layers  6. CNN -Case study with MNIST  7. CNN VS Fully Connected

Deep Learning: UNIT 2- CNN Notes

                                                                                                   UNIT II  CNN  1. Introduction  2. striding and padding   3. pooling layers  4. structure  5. operations and prediction of CNN with layers  6. CNN -Case study with MNIST  7.  CNN VS Fully Connected

Machine Learning - Support Vector Machines (SVM) - MCQs

 Machine Learning - Support Vector Machines (SVM) - MCQs 1. A Support Vector Machine can be used for A.     Performing linear or nonlinear classification B.     Performing regression C.     For outlier detection D.     All of the above Ans: D 2. The decision boundaries in a Support Vector machine is fully determined (or “supported”) by the instances located on the edge of the street? Top of Form True False Ans: A 3. Support Vector Machines are not sensitive to feature scaling A.     Top of Form True False Ans: B 4. If we strictly impose that all instances be off the street and on the right side, this is called  Soft margin classification  Hard margin classification  Strict margin classification  Loose margin classification Ans: B 5. The main issues with hard margin classification are It only works if the data is linearly separable It is quite sensitive to outliers It is impossible to find a margin if the data is not l