Posts

Showing posts with the label RNN

Deep Learning: UNIT 3: RNN

  UNIT III RNN ------------------------------------------------------------------------------------------------------------------------ 1.      Handling Branches 2.      Layers 3.      Nodes 4.      Essential Elements 5.      Vanilla RNNs 6.      GRUs 7.      LSTM   πŸ‘‰  Deep Learning: UNIT 3 (A): RNN: Notes πŸ‘‰ Deep Learning: UNIT 3 (A) : RNN : PPTs πŸ‘‰  Deep Learning: UNIT- 3: RNN: Long Answer Questions πŸ‘‰  Deep Learning: UNIT 3 : RNN : Short Answer Questions

Deep Learning: UNIT 3 : RNN : Short Answer Questions

                                                                               UNIT 3 RNN Short Answer Questions 1.      List the different types of Recurrent Neural Networks. 2.      List the different variants in of RNNs with RNN Nodes. 3.      What is the purpose of RNN? 4.      List the different applications of RNNs. 5.      Define RNN Layer. 6.      Define RNN Node. 7.      List the essential elements of RNN. 8.      How can you handle branches in RNN?

Deep Learning: UNIT- 3: RNN: Long Answer Questions

                                                                                                 UNIT 3 RNN Long Answer Questions 1.      Explain RNNLayer with neat diagram. 2.      Explain RNNNode with example. 3.      What is the drawback of Artificial Neural Network? How can you overcome that? Explain. 4.      Explain how RNNs handle sequential data. 5.      Explain the basic three structures of RNN 6.      What is the role of the hidden state in an RNN? 7.      What is a Recurrent Neural Network (RNN) and how does it differ from a feedforward neural network? 8.      Draw and explain the architecture of Recurrent Neural Networks. 9.      Draw and explain Schematic diagram of a recurrent neural network? 10.   List the different types of Recurrent Neural Networks. Explain them with example. 11.   Explain the essential elements of RNNNodes.  

Deep Learning: UNIT 3 (A): RNN: Notes

  UNIT III (A) RNN -------------------------------------------------------------------------------------------------------------------- 1.      Handling Branches 2.      Layers 3.      Nodes 4.      Essential Elements

Deep Learning: UNIT 3 (A) : RNN : PPTs

UNIT III (A) RNN 1.      Handling Branches 2.      Layers 3.      Nodes 4.      Essential Elements

About Deep Learning

 Deep Learning UNIT I Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions. πŸ‘‰ Deep Learning: UNIT 1 (A) Notes: Deep Learning: Fundamentals Part 1 Notes πŸ‘‰ Deep Learning: UNIT 1 (A) PPTs: Deep Learning Fundamentals Part 1 PPTs πŸ‘‰ Deep Learning: Unit 1 (B) Notes: Deep Learning Fundamentals Part 2 Notes πŸ‘‰ Deep Learning: UNIT 1 (B): Deep Learning: Fundamentals Part2 PPTs πŸ‘‰ Deep Learning: UNIT 1: Deep Learning - Fundamentals: Long Answer Questions πŸ‘‰ Deep Learning: UNIT 1: Deep Learning - Fundamentals : Short Answer Questions   UNIT II CNN: Introduction, striding and padding, pooling layers , structure, o

Deep Learning

Deep Learning   πŸ‘‰ Deep Learning Syllabus πŸ‘‰ Deep Learning: Fundamentals πŸ‘‰ CNN πŸ‘‰ RNN πŸ‘‰Autoencoders πŸ‘‰Transfer   Learning UNIT I Deep Learning: Fundamentals, Introduction, Building Block of Neural Networks, Layers, MLPs, Forward pass, backward pass, class, trainer and optimizer, The Vanishing and Exploding Gradient Problems, Difficulties in Convergence, Local and Spurious Optima, Preprocessing, Momentum, learning rate Decay, Weight Initialization, Regularization, Dropout, SoftMax, Cross Entropy loss function, Activation Functions. UNIT II CNN: Introduction, striding and padding, pooling layers, structure, operations and prediction of CNN with layers, CNN -Case study with MNIST, CNN VS Fully Connected UNIT III RNN: Handling Branches, Layers, Nodes, Essential Elements-Vanilla RNNs, GRUs, LSTM UNIT IV Autoencoders: Denoising Autoencoders, Sparse Autoencoders, Deep Autoencoders, Variational Autoencoders, GANS UNIT V Transfer Learning - Types, Methodologies, Diving into Transfer Learn