Posts

About Machine Learning

Welcome! Your Hub for AI, Machine Learning, and Emerging Technologies In today’s rapidly evolving tech landscape, staying updated with the latest advancements is essential, especially for students, educators, and professionals alike. Machine Learning Adda is your one-stop destination for all things related to  Artificial Intelligence (AI) ,  Machine Learning (ML) ,  Deep Learning ,  Data Wrangling ,  Software Engineering ,  Formal Languages and Automata Theory , and a wide array of cutting-edge technologies.

Deep Learning - UNIT 5 : Transfer Learning PPTs

UNIT V  Transfer Learning  Types  Methodologies  Diving into Transfer Learning  Challenges  

Deep Learning : UNIT 5 : Transfer Learning

  UNIT V  Transfer Learning  1. Types  2. Methodologies  3. Diving into Transfer Learning  4. Challenges 👉 Transfer learning Notes 👉 Transfer Learning PPTs

Deep Learning: UNIT 4 : Autoencoders

UNIT IV Autoencoders 1.      Denoising Autoencoders 2.      Sparse Autoencoders 3.      Deep Autoencoders 4.      Variational Autoencoders 5.      GANS   👉 Autoencoders Notes 👉 Autoencoders PPTs

Deep Learning : UNIT 5: Transfer Learning Notes

UNIT V  Transfer Learning  1. Types  2. Methodologies  3. Diving into Transfer Learning  4. Challenges   Reference: Dipanjan Sarkar, Raghav Bali, “Transfer Learning in Action”, Manning Publications, 2021

Deep Learning: UNIT-4 : Autoencoders Notes

UNIT IV  Autoencoders  1. Denoising Autoencoders  2. Sparse Autoencoders  3. Deep Autoencoders  4. Variational Autoencoders  5. GANS   Reference: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems, Aurélien Géron, SECOND EDITION, O’Reilly

Deep Learning UNIT- 4 Autoencoders PPTs

UNIT IV  Autoencoders   1. Denoising Autoencoders  2. Sparse Autoencoders  3. Deep Autoencoders  4. Variational Autoencoders  5. GANS   Reference: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems, Aurélien Géron, SECOND EDITION, O’Reilly

NN : Forward and Back Propagation MCQs & Program

Image
  NN : Forward and Back Propagation Q1. Sigmoid and softmax functions Which of the following statements is true for a neural network having more than one output neuron ? Choose the correct answer from below: A.     In a neural network where the output neurons have the sigmoid activation, the sum of all the outputs from the neurons is always 1. B.     In a neural network where the output neurons have the sigmoid activation, the sum of all the outputs from the neurons is 1 if and only if we have just two output neurons. C.     In a neural network where the output neurons have the softmax activation, the sum of all the outputs from the neurons is always 1. D.     The softmax function is a special case of the sigmoid function Ans: C Correct option :  In a neural network where the output neurons have the softmax activation, the sum of all the outputs from the neurons is always 1. Explanation : ...